LLPE Home Linear Logic Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  LLPE Home  >  Th. List  >  eac2d Structured version  

Theorem eac2d 39
Description: & elimination rule, right hand side. ax-eac2 34 has a negation for some reason, this one doesn't.
Hypothesis
Ref Expression
eac2d.1 (𝜑 ⅋ (𝜓 & 𝜒))
Assertion
Ref Expression
eac2d (𝜑𝜒)

Proof of Theorem eac2d
StepHypRef Expression
1 eac2d.1 . . . 4 (𝜑 ⅋ (𝜓 & 𝜒))
21dni1 25 . . 3 (~ ~ 𝜑 ⅋ (𝜓 & 𝜒))
32ax-eac2 34 . 2 (~ ~ 𝜑𝜒)
43dne1 26 1 (𝜑𝜒)
Colors of variables: wff var nilad
Syntax hints:  wmd 2  ~ wneg 3   & wac 30
This theorem was proved from axioms:  ax-ibot 4  ax-ebot 5  ax-cut 6  ax-init 7  ax-mdco 8  ax-eac2 34
This theorem is referenced by:  acco  43  acas  44  acasr  45  dismdac  46  extmdac  47  acm1  80
  Copyright terms: Public domain W3C validator