Linear Logic Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > LLPE Home > Th. List > acm1 | Structured version |
Description: With is monotone in its first argument. |
Ref | Expression |
---|---|
acm1.1 | ⊦ (𝜃 ⅋ (𝜑 & 𝜓)) |
acm1.2 | ⊦ (𝜑 ⊸ 𝜒) |
Ref | Expression |
---|---|
acm1 | ⊦ (𝜃 ⅋ (𝜒 & 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | acm1.1 | . . . 4 ⊦ (𝜃 ⅋ (𝜑 & 𝜓)) | |
2 | 1 | eac1d 37 | . . 3 ⊦ (𝜃 ⅋ 𝜑) |
3 | acm1.2 | . . 3 ⊦ (𝜑 ⊸ 𝜒) | |
4 | 2, 3 | mdm2i 72 | . 2 ⊦ (𝜃 ⅋ 𝜒) |
5 | 1 | eac2d 39 | . 2 ⊦ (𝜃 ⅋ 𝜓) |
6 | 4, 5 | iac 35 | 1 ⊦ (𝜃 ⅋ (𝜒 & 𝜓)) |
Colors of variables: wff var nilad |
Syntax hints: ⅋ wmd 2 & wac 30 ⊸ wli 61 |
This theorem was proved from axioms: ax-ibot 4 ax-ebot 5 ax-cut 6 ax-init 7 ax-mdco 8 ax-mdas 9 ax-iac 32 ax-eac1 33 ax-eac2 34 |
This theorem depends on definitions: df-lb 56 df-li 62 |
This theorem is referenced by: acm2 81 acm1i 82 acm1s 84 |
Copyright terms: Public domain | W3C validator |