LLPE Home Linear Logic Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  LLPE Home  >  Th. List  >  acm1 Structured version  

Theorem acm1 80
Description: With is monotone in its first argument.
Hypotheses
Ref Expression
acm1.1 (𝜃 ⅋ (𝜑 & 𝜓))
acm1.2 (𝜑𝜒)
Assertion
Ref Expression
acm1 (𝜃 ⅋ (𝜒 & 𝜓))

Proof of Theorem acm1
StepHypRef Expression
1 acm1.1 . . . 4 (𝜃 ⅋ (𝜑 & 𝜓))
21eac1d 37 . . 3 (𝜃𝜑)
3 acm1.2 . . 3 (𝜑𝜒)
42, 3mdm2i 72 . 2 (𝜃𝜒)
51eac2d 39 . 2 (𝜃𝜓)
64, 5iac 35 1 (𝜃 ⅋ (𝜒 & 𝜓))
Colors of variables: wff var nilad
Syntax hints:  wmd 2   & wac 30  wli 61
This theorem was proved from axioms:  ax-ibot 4  ax-ebot 5  ax-cut 6  ax-init 7  ax-mdco 8  ax-mdas 9  ax-iac 32  ax-eac1 33  ax-eac2 34
This theorem depends on definitions:  df-lb 56  df-li 62
This theorem is referenced by:  acm2  81  acm1i  82  acm1s  84
  Copyright terms: Public domain W3C validator