LLPE Home Linear Logic Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  LLPE Home  >  Th. List  >  acm2 Structured version  

Theorem acm2 81
Description: With is monotone in its second argument.
Hypotheses
Ref Expression
acm2.1 (𝜃 ⅋ (𝜑 & 𝜓))
acm2.2 (𝜓𝜒)
Assertion
Ref Expression
acm2 (𝜃 ⅋ (𝜑 & 𝜒))

Proof of Theorem acm2
StepHypRef Expression
1 acm2.1 . . . 4 (𝜃 ⅋ (𝜑 & 𝜓))
21acco 43 . . 3 (𝜃 ⅋ (𝜓 & 𝜑))
3 acm2.2 . . 3 (𝜓𝜒)
42, 3acm1 80 . 2 (𝜃 ⅋ (𝜒 & 𝜑))
54acco 43 1 (𝜃 ⅋ (𝜑 & 𝜒))
Colors of variables: wff var nilad
Syntax hints:  wmd 2   & wac 30  wli 61
This theorem was proved from axioms:  ax-ibot 4  ax-ebot 5  ax-cut 6  ax-init 7  ax-mdco 8  ax-mdas 9  ax-iac 32  ax-eac1 33  ax-eac2 34
This theorem depends on definitions:  df-lb 56  df-li 62
This theorem is referenced by:  acm2i  83  acm2s  85
  Copyright terms: Public domain W3C validator