LLPE Home Linear Logic Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  LLPE Home  >  Th. List  >  acm2i Structured version  

Theorem acm2i 83
Description: With is monotone in its second argument. Inference form of acm2 81.
Hypotheses
Ref Expression
acm2i.1 (𝜑 & 𝜓)
acm2i.2 (𝜓𝜒)
Assertion
Ref Expression
acm2i (𝜑 & 𝜒)

Proof of Theorem acm2i
StepHypRef Expression
1 acm2i.1 . . . 4 (𝜑 & 𝜓)
21ax-ibot 4 . . 3 (⊥ ⅋ (𝜑 & 𝜓))
3 acm2i.2 . . 3 (𝜓𝜒)
42, 3acm2 81 . 2 (⊥ ⅋ (𝜑 & 𝜒))
54ax-ebot 5 1 (𝜑 & 𝜒)
Colors of variables: wff var nilad
Syntax hints:  wbot 1   & wac 30  wli 61
This theorem was proved from axioms:  ax-ibot 4  ax-ebot 5  ax-cut 6  ax-init 7  ax-mdco 8  ax-mdas 9  ax-iac 32  ax-eac1 33  ax-eac2 34
This theorem depends on definitions:  df-lb 56  df-li 62
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator