LLPE Home Linear Logic Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  LLPE Home  >  Th. List  >  acm1s Structured version  

Theorem acm1s 84
Description: With is monotone in its first argument. Syllogism form of acm1 80.
Hypothesis
Ref Expression
acm1s.1 (𝜑𝜒)
Assertion
Ref Expression
acm1s ((𝜑 & 𝜓) ⊸ (𝜒 & 𝜓))

Proof of Theorem acm1s
StepHypRef Expression
1 ax-init 7 . . 3 (~ (𝜑 & 𝜓) ⅋ (𝜑 & 𝜓))
2 acm1s.1 . . 3 (𝜑𝜒)
31, 2acm1 80 . 2 (~ (𝜑 & 𝜓) ⅋ (𝜒 & 𝜓))
43dfli2i 66 1 ((𝜑 & 𝜓) ⊸ (𝜒 & 𝜓))
Colors of variables: wff var nilad
Syntax hints:  ~ wneg 3   & wac 30  wli 61
This theorem was proved from axioms:  ax-ibot 4  ax-ebot 5  ax-cut 6  ax-init 7  ax-mdco 8  ax-mdas 9  ax-iac 32  ax-eac1 33  ax-eac2 34
This theorem depends on definitions:  df-lb 56  df-li 62
This theorem is referenced by:  dflb2s  92
  Copyright terms: Public domain W3C validator