LLPE Home Linear Logic Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  LLPE Home  >  Th. List  >  eac2i Structured version  

Theorem eac2i 40
Description: & elimination rule, right hand side. Inference form of ax-eac2 34.
Hypothesis
Ref Expression
eac2i.1 (𝜑 & 𝜓)
Assertion
Ref Expression
eac2i 𝜓

Proof of Theorem eac2i
StepHypRef Expression
1 eac2i.1 . . . 4 (𝜑 & 𝜓)
21inenebot 27 . . 3 (~ ~ ⊥ ⅋ (𝜑 & 𝜓))
32ax-eac2 34 . 2 (~ ~ ⊥ ⅋ 𝜓)
43enenebot 28 1 𝜓
Colors of variables: wff var nilad
Syntax hints:  wbot 1  ~ wneg 3   & wac 30
This theorem was proved from axioms:  ax-ibot 4  ax-ebot 5  ax-cut 6  ax-init 7  ax-mdco 8  ax-eac2 34
This theorem is referenced by:  lb2d  58  lbi1s  87  dflb2s  92
  Copyright terms: Public domain W3C validator