LLPE Home Linear Logic Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  LLPE Home  >  Th. List  >  lbtri Structured version  

Theorem lbtri 101
Description: Linear biconditional is transitive. Inference for lbtr 128.
Hypotheses
Ref Expression
lbtri.1 (𝜑𝜓)
lbtri.2 (𝜓𝜒)
Assertion
Ref Expression
lbtri (𝜑𝜒)

Proof of Theorem lbtri
StepHypRef Expression
1 lbtri.1 . . 3 (𝜑𝜓)
21lbsymi 100 . 2 (𝜓𝜑)
3 lbtri.2 . 2 (𝜓𝜒)
42, 3lbeui 99 1 (𝜑𝜒)
Colors of variables: wff var nilad
Syntax hints:  wlb 55
This theorem was proved from axioms:  ax-ibot 4  ax-ebot 5  ax-cut 6  ax-init 7  ax-mdco 8  ax-mdas 9  ax-iac 32  ax-eac1 33  ax-eac2 34
This theorem depends on definitions:  df-lb 56  df-li 62
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator