| Linear Logic Proof Explorer |
< Previous
Next >
Nearby theorems |
|
| Mirrors > Home > LLPE Home > Th. List > lbtri | Structured version | |
| Description: Linear biconditional is transitive. Inference for lbtr 128. |
| Ref | Expression |
|---|---|
| lbtri.1 | ⊦ (𝜑 ⧟ 𝜓) |
| lbtri.2 | ⊦ (𝜓 ⧟ 𝜒) |
| Ref | Expression |
|---|---|
| lbtri | ⊦ (𝜑 ⧟ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lbtri.1 | . . 3 ⊦ (𝜑 ⧟ 𝜓) | |
| 2 | 1 | lbsymi 100 | . 2 ⊦ (𝜓 ⧟ 𝜑) |
| 3 | lbtri.2 | . 2 ⊦ (𝜓 ⧟ 𝜒) | |
| 4 | 2, 3 | lbeui 99 | 1 ⊦ (𝜑 ⧟ 𝜒) |
| Colors of variables: wff var nilad |
| Syntax hints: ⧟ wlb 55 |
| This theorem was proved from axioms: ax-ibot 4 ax-ebot 5 ax-cut 6 ax-init 7 ax-mdco 8 ax-mdas 9 ax-iac 32 ax-eac1 33 ax-eac2 34 |
| This theorem depends on definitions: df-lb 56 df-li 62 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |