LLPE Home Linear Logic Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  LLPE Home  >  Th. List  >  dflb1s Structured version  

Theorem dflb1s 91
Description: Forward implication of biconditional definition.
Assertion
Ref Expression
dflb1s ((𝜑𝜓) ⊸ ((𝜑𝜓) & (𝜓𝜑)))

Proof of Theorem dflb1s
StepHypRef Expression
1 lbi1s 87 . . . 4 ((𝜑𝜓) ⊸ (𝜑𝜓))
21dfli1i 65 . . 3 (~ (𝜑𝜓) ⅋ (𝜑𝜓))
3 lbi2s 88 . . . 4 ((𝜑𝜓) ⊸ (𝜓𝜑))
43dfli1i 65 . . 3 (~ (𝜑𝜓) ⅋ (𝜓𝜑))
52, 4ax-iac 32 . 2 (~ (𝜑𝜓) ⅋ ((𝜑𝜓) & (𝜓𝜑)))
65dfli2i 66 1 ((𝜑𝜓) ⊸ ((𝜑𝜓) & (𝜓𝜑)))
Colors of variables: wff var nilad
Syntax hints:   & wac 30  wlb 55  wli 61
This theorem was proved from axioms:  ax-ibot 4  ax-ebot 5  ax-cut 6  ax-init 7  ax-mdco 8  ax-iac 32  ax-eac1 33  ax-eac2 34
This theorem depends on definitions:  df-lb 56  df-li 62
This theorem is referenced by:  dflb  93
  Copyright terms: Public domain W3C validator