Linear Logic Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > LLPE Home > Th. List > dflb1s | Structured version |
Description: Forward implication of biconditional definition. |
Ref | Expression |
---|---|
dflb1s | ⊦ ((𝜑 ⧟ 𝜓) ⊸ ((𝜑 ⊸ 𝜓) & (𝜓 ⊸ 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lbi1s 87 | . . . 4 ⊦ ((𝜑 ⧟ 𝜓) ⊸ (𝜑 ⊸ 𝜓)) | |
2 | 1 | dfli1i 65 | . . 3 ⊦ (~ (𝜑 ⧟ 𝜓) ⅋ (𝜑 ⊸ 𝜓)) |
3 | lbi2s 88 | . . . 4 ⊦ ((𝜑 ⧟ 𝜓) ⊸ (𝜓 ⊸ 𝜑)) | |
4 | 3 | dfli1i 65 | . . 3 ⊦ (~ (𝜑 ⧟ 𝜓) ⅋ (𝜓 ⊸ 𝜑)) |
5 | 2, 4 | ax-iac 32 | . 2 ⊦ (~ (𝜑 ⧟ 𝜓) ⅋ ((𝜑 ⊸ 𝜓) & (𝜓 ⊸ 𝜑))) |
6 | 5 | dfli2i 66 | 1 ⊦ ((𝜑 ⧟ 𝜓) ⊸ ((𝜑 ⊸ 𝜓) & (𝜓 ⊸ 𝜑))) |
Colors of variables: wff var nilad |
Syntax hints: & wac 30 ⧟ wlb 55 ⊸ wli 61 |
This theorem was proved from axioms: ax-ibot 4 ax-ebot 5 ax-cut 6 ax-init 7 ax-mdco 8 ax-iac 32 ax-eac1 33 ax-eac2 34 |
This theorem depends on definitions: df-lb 56 df-li 62 |
This theorem is referenced by: dflb 93 |
Copyright terms: Public domain | W3C validator |