Linear Logic Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > LLPE Home > Th. List > dfli1i | Structured version |
Description: Convert from linear implication. Inference for dfli1 63. |
Ref | Expression |
---|---|
dfli1i.1 | ⊦ (𝜓 ⊸ 𝜒) |
Ref | Expression |
---|---|
dfli1i | ⊦ (~ 𝜓 ⅋ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfli1i.1 | . . . 4 ⊦ (𝜓 ⊸ 𝜒) | |
2 | 1 | ax-ibot 4 | . . 3 ⊦ (⊥ ⅋ (𝜓 ⊸ 𝜒)) |
3 | 2 | dfli1 63 | . 2 ⊦ (⊥ ⅋ (~ 𝜓 ⅋ 𝜒)) |
4 | 3 | ax-ebot 5 | 1 ⊦ (~ 𝜓 ⅋ 𝜒) |
Colors of variables: wff var nilad |
Syntax hints: ⊥wbot 1 ⅋ wmd 2 ~ wneg 3 ⊸ wli 61 |
This theorem was proved from axioms: ax-ibot 4 ax-ebot 5 ax-cut 6 ax-init 7 ax-mdco 8 ax-eac1 33 |
This theorem depends on definitions: df-lb 56 df-li 62 |
This theorem is referenced by: lb1s 67 lb2s 68 nems 86 dflb1s 91 licon 94 ilbd 97 lbsymd 102 |
Copyright terms: Public domain | W3C validator |