LLPE Home Linear Logic Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  LLPE Home  >  Th. List  >  dfli1i Structured version  

Theorem dfli1i 65
Description: Convert from linear implication. Inference for dfli1 63.
Hypothesis
Ref Expression
dfli1i.1 (𝜓𝜒)
Assertion
Ref Expression
dfli1i (~ 𝜓𝜒)

Proof of Theorem dfli1i
StepHypRef Expression
1 dfli1i.1 . . . 4 (𝜓𝜒)
21ax-ibot 4 . . 3 (⊥ ⅋ (𝜓𝜒))
32dfli1 63 . 2 (⊥ ⅋ (~ 𝜓𝜒))
43ax-ebot 5 1 (~ 𝜓𝜒)
Colors of variables: wff var nilad
Syntax hints:  wbot 1  wmd 2  ~ wneg 3  wli 61
This theorem was proved from axioms:  ax-ibot 4  ax-ebot 5  ax-cut 6  ax-init 7  ax-mdco 8  ax-eac1 33
This theorem depends on definitions:  df-lb 56  df-li 62
This theorem is referenced by:  lb1s  67  lb2s  68  nems  86  dflb1s  91  licon  94  ilbd  97  lbsymd  102
  Copyright terms: Public domain W3C validator