LLPE Home Linear Logic Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  LLPE Home  >  Th. List  >  dfli1 Structured version  

Theorem dfli1 63
Description: Convert from linear implication.
Hypothesis
Ref Expression
dfli1.1 (𝜑 ⅋ (𝜓𝜒))
Assertion
Ref Expression
dfli1 (𝜑 ⅋ (~ 𝜓𝜒))

Proof of Theorem dfli1
StepHypRef Expression
1 dfli1.1 . 2 (𝜑 ⅋ (𝜓𝜒))
2 df-li 62 . 2 ((𝜓𝜒) ⧟ (~ 𝜓𝜒))
31, 2lb1d 57 1 (𝜑 ⅋ (~ 𝜓𝜒))
Colors of variables: wff var nilad
Syntax hints:  wmd 2  ~ wneg 3  wli 61
This theorem was proved from axioms:  ax-ibot 4  ax-ebot 5  ax-cut 6  ax-init 7  ax-mdco 8  ax-eac1 33
This theorem depends on definitions:  df-lb 56  df-li 62
This theorem is referenced by:  dfli1i  65  dflb2s  92  licond  95
  Copyright terms: Public domain W3C validator