LLPE Home Linear Logic Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  LLPE Home  >  Th. List  >  dfli2 Structured version  

Theorem dfli2 64
Description: Convert to linear implication.
Hypothesis
Ref Expression
dfli2.1 (𝜑 ⅋ (~ 𝜓𝜒))
Assertion
Ref Expression
dfli2 (𝜑 ⅋ (𝜓𝜒))

Proof of Theorem dfli2
StepHypRef Expression
1 dfli2.1 . 2 (𝜑 ⅋ (~ 𝜓𝜒))
2 df-li 62 . 2 ((𝜓𝜒) ⧟ (~ 𝜓𝜒))
31, 2lb2d 58 1 (𝜑 ⅋ (𝜓𝜒))
Colors of variables: wff var nilad
Syntax hints:  wmd 2  ~ wneg 3  wli 61
This theorem was proved from axioms:  ax-ibot 4  ax-ebot 5  ax-cut 6  ax-init 7  ax-mdco 8  ax-eac1 33  ax-eac2 34
This theorem depends on definitions:  df-lb 56  df-li 62
This theorem is referenced by:  dfli2i  66  licond  95
  Copyright terms: Public domain W3C validator