LLPE Home Linear Logic Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  LLPE Home  >  Th. List  >  lb1i Structured version  

Theorem lb1i 59
Description: Forward inference using .
Hypotheses
Ref Expression
lb1i.1 𝜑
lb1i.2 (𝜑𝜓)
Assertion
Ref Expression
lb1i 𝜓

Proof of Theorem lb1i
StepHypRef Expression
1 lb1i.1 . . . 4 𝜑
21ax-ibot 4 . . 3 (⊥ ⅋ 𝜑)
3 lb1i.2 . . 3 (𝜑𝜓)
42, 3lb1d 57 . 2 (⊥ ⅋ 𝜓)
54ax-ebot 5 1 𝜓
Colors of variables: wff var nilad
Syntax hints:  wbot 1  wlb 55
This theorem was proved from axioms:  ax-ibot 4  ax-ebot 5  ax-cut 6  ax-init 7  ax-mdco 8  ax-eac1 33
This theorem depends on definitions:  df-lb 56
This theorem is referenced by:  mdm2  69  syl  75
  Copyright terms: Public domain W3C validator