LLPE Home Linear Logic Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  LLPE Home  >  Th. List  >  mdasi Structured version  

Theorem mdasi 14
Description: is associative. Inference form of ax-mdas 9.
Hypothesis
Ref Expression
mdasi.1 ((𝜑𝜓) ⅋ 𝜒)
Assertion
Ref Expression
mdasi (𝜑 ⅋ (𝜓𝜒))

Proof of Theorem mdasi
StepHypRef Expression
1 mdasi.1 . 2 ((𝜑𝜓) ⅋ 𝜒)
2 ax-mdas 9 . 2 (~ ((𝜑𝜓) ⅋ 𝜒) ⅋ (𝜑 ⅋ (𝜓𝜒)))
31, 2cut1 10 1 (𝜑 ⅋ (𝜓𝜒))
Colors of variables: wff var nilad
Syntax hints:  wmd 2
This theorem was proved from axioms:  ax-ibot 4  ax-ebot 5  ax-cut 6  ax-mdas 9
This theorem is referenced by:  dismdac  46  extmdac  47  mdm2  69  licond  95  md1  113
  Copyright terms: Public domain W3C validator