LLPE Home Linear Logic Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  LLPE Home  >  Th. List  >  mdm1i Structured version  

Theorem mdm1i 71
Description: Par is monotone in its first argument. Inference form of mdm1 70.
Hypotheses
Ref Expression
mdm1i.1 (𝜑𝜓)
mdm1i.2 (𝜑𝜒)
Assertion
Ref Expression
mdm1i (𝜒𝜓)

Proof of Theorem mdm1i
StepHypRef Expression
1 mdm1i.1 . . . 4 (𝜑𝜓)
21ax-ibot 4 . . 3 (⊥ ⅋ (𝜑𝜓))
3 mdm1i.2 . . 3 (𝜑𝜒)
42, 3mdm1 70 . 2 (⊥ ⅋ (𝜒𝜓))
54ax-ebot 5 1 (𝜒𝜓)
Colors of variables: wff var nilad
Syntax hints:  wbot 1  wmd 2  wli 61
This theorem was proved from axioms:  ax-ibot 4  ax-ebot 5  ax-cut 6  ax-init 7  ax-mdco 8  ax-mdas 9  ax-eac1 33
This theorem depends on definitions:  df-lb 56  df-li 62
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator